INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 4375-4394

The effect of corner angles in bimaterial structures
Ilyas Mohammed, Kenneth M. Liechti *

Research Center for Mechanics of Solids, Structures and Materials, University of Texas at Austin, Austin, TX 78712-1085, USA
Received 2 August 1999; in revised form 5 October 2000

Abstract

The effect of the corner angle on bimaterial corner stresses is studied. Corners (with one side bonded) and joints (with
both sides bonded) are studied considering the materials to be elastic and plastic. Two structures with bimaterial
corners, lap and scarf joints are considered. For the elastic analysis, the singularity at the corner as well as the stress
intensity factor are found for a range of angles using the Betti’s law based reciprocal work contour integral theorem
which combines the ease of finite element calculations far away from the corner with the singular representation near
the corner. The singularity and the stress intensity factors were found to depend on the angle. For the work-hardening
plastic analysis, a fourth order differential equation was solved to obtain the singularity at the corner and finite element
solutions were used to obtain stress intensity factors. These parameters were found to depend on load level, hardening
exponent and the angle. It is concluded that the stress intensity factors are unsuitable as failure criteria for a corner with
varying angle. One exception was found to be for a corner with high yielding that gave rise to a constant stress intensity
factor for different corner angles. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to the increasing use of adhesively bonded joints in aerospace and automotive industries and
multiple layers in microelectronics packaging, many researchers have addressed the problem of stress
singularities near bimaterial corners and joints. Williams (1952) showed that a stress singularity of type »~*
exists near a bimaterial corner where A can be a complex number and 0 < real (1) < 0.5. Bogy (1971)
calculated the real components of A for different material properties and corner angles. Hein and Erdogan
(1971) did the same and found the complex values of 4, both singular and non-singular ones. Carpenter and
Byers (1987) calculated the stress intensity factor based on the technique developed by Stern et al. (1976). A
singularity analysis based on the J, deformation theory was developed by Lau and Delale (1988) for corners
and by Duva (1988) for joints. Reedy (1993) obtained the stress intensity factors for butt joints using the
above theory.

*Corresponding author. Fax: +1-512-471-5500.
E-mail address: kml@mail.utexas.edu (K.M. Liechti).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00389-9



4376 I Mohammed, K. M. Liechti | International Journal of Solids and Structures 38 (2001) 43754394

The study of angle variation in the bimaterial corners has received less attention. Many researchers such
as Gradin (1982), Groth and Brottare (1988), Reedy and Guess (1993), Hattori et al. (1989) and Fernlund
et al. (1994) have used stress intensity factors as nucleation criteria. These criteria have served well for
bimaterial corners with the same corner angle. Some researchers (Hattori et al., 1989) have used stress
intensity factors as nucleation criteria for varying corner angles (varying A). For this criterion to work for
varying corner angles, the stress intensity factor has to be able to capture the severity of the corner and
should have a simple relationship with the corner angle. For instance, if the stress singularity decreases with
increasing corner angle, the stress intensity factor and the corresponding stress near the corner should have
a similar variation. If that is indeed the case, the stress intensity factor represents the severity of the corner
and hence can be used as nucleation criterion.

In this study, the feasibility of using a stress intensity factor approach for establishing the severity of a
variety of corners was examined. This was accomplished by considering lap and scarf joints where

1. The ratio of elastic moduli was varied.
2. The nature of the corner was changed (one side bonded vs. both sides bonded).
3. The corner angle was varied.

The joints were analyzed considering elastic and elastoplastic behavior. In the elastoplastic case, the
effect of hardening exponent was also examined. The joints considered here contained no adhesive inter-
layers and will not be able to account for any thickness effects, should they arise.

2. Theory
2.1. Analysis for elastic materials

For an elastic material, the displacements and stresses can be expressed using complex potentials
(Muskhelishvili, 1963)
1+,

Um = Upr + ium() = (
Em

)em (KQO (z) — zf)in(é) — ‘7’,,,(2))
S = Oy + 10w = Q. (2) + @, (2) — 20 () =~ T (2) (1)
z
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z

where the subscript m corresponds to the material m = 1 or m = 2. Following the method of Stern et al.
(1976), the complex potentials are assumed to be

Q,(z) = Az + a,,,z'*'i 2)
V.(z) = B,z "+ bmzl_Z

The solution procedure is the same as the one followed by Carpenter and Byers (1987). Substituting Eq.
(2) in Eq. (1), and applying the following boundary conditions for the bimaterial corner shown in Fig. 1(a),

U1(0 = 0) = Us(0 = 0)
Z16(9 = O) = 229(9 = 0)
S0 =—0,)=0

(0 =0,)=0

(3)
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Fig. 1. (a) A bimaterial corner with only one interface bonded and (b) a bimaterial joint with both interfaces bonded.

yield a system of equations, which may be written as
[D]{Al A2 ay ap Bl B2 bl b2 }T = {0} (4)

where, Dj; = Dy(E1, E2, v, v2, 01, 02; 4).
The eigenvalues of the matrix D are the stress singularities at the corner. Similarly, for the joint shown in
Fig. 1(b) where both the sides are bonded, the boundary conditions are,

Ui (0=0)=U,(0=0)
Z10(0 = 0) = Zop(0 = 0)
Ui (0 = —0,) = Uy (0 = 0,)
Z1p(0 = —0,) = Zp(0 = 0,)

()

These boundary conditions yield another matrix similar to matrix D whose eigenvalues are the stress
singularities for the joint. Once the stress singularities are known, the stresses are given as,

N
(1, 0) = 3K (Re (), Im(2). 7. 0). (©)
where L is some characteristic length. Yang and Munz (1995) have given these stresses in more detail. As
the emphasis in this study is the variation of bimaterial corner angles (6, 8,), the nature of the joint (single
side and both sides bonded), the ratio of moduli, and the extraction of stress intensity factors using FEM,
the emphasis is not on including many stress singularities but trying to determine the dominant one and its
range of dominance. With this in mind, and considering the most dominant singularity, the normal and
shear stress intensity factors can be written as

B rReWgy(r,0 = 0)
" fw(Re(2),Im(4),%,0 = 0)
B rReAg,(r, 0 = 0)
~ fo(Re(2),Im(2),%,0 = 0)

K

()

Ki

Please note that Kj and Kj; as given in Eq. (7) are derived from the same stress intensity factor, K"(n = 1).
The stress intensity factors are non-dimensionalized as given below
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KILRe()V)
K =
0o
: (8)
. KHLRe(/‘)
Ky=—-—
g9

This definition was chosen for the normal and shear stress intensity factors (Kj and Kj) to determine if a
simple correlation exists between them and the corresponding stresses that can be expressed as a function of
the corner angle and stiffness ratios of the two materials. This would greatly help in characterizing bi-
material joints of arbitrary angles and material properties with only a few experiments and finite element
analyses. Otherwise, extensive experiments and analyses need to be carried out in order to obtain an em-
pirical nucleation criterion that will be valid for all corner angles and stiffness ratios.

K7 and Ky given in Eq. (7) can be found using the reciprocal work contour integral theorem (RWCIM)
developed by Stern et al. (1976). This method is based on Betti’s law where the singular solutions are used
near the corner and finite element solutions are used far away from the corner.

2.2. Analysis for J, deformation plastic materials

For the plasticity analysis, the material 1 is assumed to be rigid and the material 2 is assumed to follow
the constitutive equations given in Eq. (7). Since the Airy stress function is assumed to be in variable
separable form, it is not possible to assume that each materials is a different Ramberg-Osgood material
unless it is also assumed that the hardening exponents are the same (Lau and Delale, 1988). The assumption
of one material being rigid and the other material being a Ramberg-Osgood material is reasonable since the
bimaterials are usually made of materials with at least one order of magnitude difference in the stiffness.
This is certainly the case for polymer based composites, encapsulation of chips, adhesives, joints, etc.

Near the corner, the elastic strains are negligible compared to the plastic strains and hence can be ne-
glected. The strains are then given by

3o /. \""
81‘1—5}—5<6—Y> Sij 9)

For plane strain conditions, these strains reduce to

n—1
o =222\ (6 — ow)
" 1 E oy rr 00
3a /0. \""
= — — —e - . 10
&00 2E(Gy> (0'09 J;r) ( )
L 3afa\"
" 3E\ay ) 7
where,

1/2
O = (%Sijsi/‘)l/z = (%(O-rr - 000)2 + 3039)

Assuming the Airy stress function to be in variable separable form, let
¢ =r""F(0)

The stresses reduce to
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P [F(0) + (= A+ 2)F(0)]
Gog =1~ [(—A+2)(—) + 1)F(0)] (11)
oo =r"[—(=2+1)F(0)]

where, () =0/00( ).
The strains can be found using the plane strain constitutive equations (Eq. (8)). The displacements then
follow from the strain displacement equations.

ou, a1 it (. 0))"_1f()»79) (12)

S E TSI it
1 [10u,  Oup uy 0 fup\ 2 1 Ou,
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where
3

g(4,0) = \/[4 (F"(0) 4+ A=A+ 2)F(0))” + 3(—(—=4 + l)F’(H))z} (14)
and

(1,0) = F'(0) + A=+ 2)F(0) (15)
Assuming material 1 to be rigid in Fig. 1(a), the boundary conditions reduce to

699(0 = 92) =0= F(HQ) =0

0,0(9: 92) :0:>F,(02) =0 (16)

u,(6=0)=0= F"(0) + A(—1+2)F(0)

upg(0=0)=0=F"0)+F0)4(1l —-In)(— A+ 1)+ A(—21+2)]=0
Finally, using the compatibility equation,

62800 l azgrr g % _1 aSrr ] 623r6 + l agr@

o 20> r or r Or T |Oro0 r* 00
yields the fourth order governing differential equation,

O*F  h(4,0,n)

el y Uy — =2 1" 17

o0 H(4,0,n) H-it2F {17)
where

0g 0
K3, 0,1) = In(in — 2)g" ' f — d(—dn+ 1)(=A+ 1) {(n ~1)g" ZZ‘ZF’ g ‘F”] 2(n — 1)g"> ag af;

=) 2>g"‘3<2§>2f+ (n - 1>g"‘5f<411 EE KSR FFD

—(n—1)g" 3f<§B (%>2+6(—A+1)2((F”)2+F’F’") )
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and H(4,0,n) = g" ' +3(n— 1)g”’3(f)2 where the functions g and f are defined in Egs. (12) and (13) re-
spectively. Hence, a homogeneous fourth order differential equation (Eq. (13)) with four homogeneous
boundary conditions (Eq. (12)) is obtained. As this equation is highly non-linear, only a numerical solution
is possible. As this is an eigenvalue problem, let

F(0) =1 (18)
without loss of generality. This makes the boundary conditions and hence the solution a unique one. The
solution strategy is to guess the value of the singularity, 4 such that assumption (Eq. (16)) is satisfied. For

the case of the joint (Fig. 1(b)) where both the sides of the corner are bonded, the boundary conditions
become,

u,(0 =0)=0= F"(0) + A(—4+2)F(0)
up(0=0)=0=F"(0)+F0)4(1 —An)(—= 2+ 1)+ A(—A1+2)]=0
u, (0 =0,) =0= F"(0,) + A(—1+2)F(0,)

up(0 = 05) = 0 = F"(0) + F'(0,)[4(1 — Jn)( — 2+ 1)+ A(— A+2)] =0

As mentioned by Duva (1988), two parameters A and say, F(6,) have to be guessed and this complicates
the problem with the resulting non-convergence to the solution. One way to avoid this problem is to note
that the problem is symmetric about 6 = 6,/2 and solve the problem only over half the domain. The last
two boundary conditions can be replaced by,

(02 =0 (%) =0

m(e:%) :0:>F”’<%) +F’<%)[4(1 ) (= A4+ A(—2+2)]=0

Now, only one parameter, 4 needs to be guessed as in the previous case (corresponding to the boundary
conditions in Eq. (14). Runge-Kutta with multiple shooting method was used for both the problems. To
find the stress intensity factors, a finite element analysis with a very fine mesh was used. The region of K
dominance was found and the stress intensity factor extracted from the stresses along the interface.

3. Results and discussion
3.1. Elasticity solution

Bogy (1971) and Hein and Erdogan (1971) have given the real and complex stress singularities for a
variety of material properties and corner angles. In this paper, as the emphasis is on studying the angular
dependence of the properties of the corner and joint, two bimaterial structures shown in Figs. 2(a) and 3(a)
were chosen. The material properties are £, = 69 GPa, v; = 0.3, v, = 0.4, and for the bimaterial corner A in
Fig. 2(a), 0, = —180°, and 0, and E, were varied. For corner B, 0, = —180°, and 0, and E, were varied.
These values were substituted in the D matrix given in Eq. (4) and the eigenvalues were found by equating
the determinant of the matrix D to zero. This yields a series of eigenvalues for each set of the chosen
variables. For the displacements and the strain energy to be bounded, the eigenvalues must satisfy the
condition, Re (1) < 0.5. This range of eigenvalues also includes those that do not give rise to stress sin-
gularities. However in Figs. 4 and 5, only the strongest singularity is plotted for varying angles and stiffness
ratios, p = E»/E).

As shown in Fig. 4, the singularity generally increases with 6, except for a slight decrease where the
singularity becomes complex. This point changes with the ratio, p and is nearly 180° for p = 0.5, as can be
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Fig. 2. (a) The lap joint, (b) the finite element discretization, and (c) the contours near the corner A.

///

seen from the plot. This is also the point where a weaker singularity becomes identical to the dominant one.
As the stiffness of material 2 decreases, the singularity decreases. For small material 2 stiffness, there is
practically no singularity for 0, < 45°. For corner B, the stress singularity is plotted in Fig. 5 and is very
strong for practically all angles except when the stiffness of material 2 is very close to that of the material 1.
Hence, dependence of the singularity on the stiffness ratio for corner A is opposite to that of corner B.
To obtain the stress intensity factors, use was made of the RWCIM of Stern et al. (1976) and explained
in detail by Carpenter and Byers (1987). As mentioned previously, this method is based on Betti’s law where
the singular solutions are used near the corner and finite element solutions are used far away from the
corner. As the finite element solution is only needed far away from the corner, a coarse mesh is sufficient,
thereby reducing computational costs and minimizing dependence on numerical accuracy of the solution.
Figs. 2(b) and 3(b) show the finite element discretization for the bimaterial structures shown in Figs. 2(a)
and 3(a) respectively. The mesh near the corners A and C are shown in Figs. 2(c) and 3(c) respectively. Each
element has a side of size /4 in Fig. 2(c) and 4/8 in Fig. 3(c), where /i is the height of the specimen. The
four contours, C1-C4 considered for integration are also shown. Using these four contours, the stress
intensity factors and hence the stresses and displacements near the corner can be found. To begin with, the
first four stress singularities were used to obtain the stresses near the corner. The effect of including more
than one stress singularity is considered later. To verify the accuracy, the stresses found by this method were
compared with the stress values obtained using finite element analysis with a very fine mesh near the corner.
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Fig. 4. Stress singularity at corner A in Fig. 2(a).

To verify the suitability of the chosen mesh near the corner, the normalized normal stress, gg/0o and
shear stress, 0,9/ 09 along the interface were plotted over 10 decades in /A4 in Figs. 6(a) and (b). The stresses
were normalized by dividing by the applied stress, go. The following values were chosen; E; = 69 GPa,
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Fig. 5. Stress singularity at the corner B in Fig. 2(a).
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Fig. 6. Comparison of solutions using RWCIM and FEM for corner A.

v =0.3,v, =04, p=0.5, 0, = —180°, and 0, = 90°. The finite elements solution obtained using a very fine
mesh was also plotted. As can be seen from these plots, except for contour Cl1, all other contour values
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agree very well with the finite elements solution. This shows that the chosen mesh is adequate and gives
excellent results near the corner.

The effect of using more that one stress singularity (eigenvalue) was also considered. The first four stress
singularities for the choice of parameters given above are; 4, = 0.4395, /7, = 0.0382, A; = —0.7481 +
10.3808, and 1, = —1.068 + 10.2714. Hence there are two singular and two non-singular eigenvalues for this
set of parameters. The normalized normal and shear stresses along the interface are plotted in Fig. 7(a) and
(b) where N is the number of stress singularities used for the calculation of the stresses. The shear stresses
are in good agreement with the finite elements solution over the range 1071° < /A < 1072 for all values of
N. The normal stress for N > 1 agrees very well with the finite elements solution. The N = 1 curve deviates
from the rest of the curves.

As these plots are made using a logarithmic scale, the slope of the lines near the corner should give the
dominant singularity. This is indeed the case as the slope of both the lines is in excellent agreement with the
Ay value. This also shows that there is a region near the corner where the stress singularity dominates. By
considering the two plots, this region is »/h < 107,

To look into the effect of N further from the corner, the above stresses were plotted over the range
1072 < r/h < 1 as shown in Fig. 8(a) and (b). From the normal stress curves, it is seen that N = 2 is the
correct choice. From the shear stress curves, it is seen that the finite element solution is close to the two
curves N = 1 and N = 2. Hence, further from the corner, the first two stress singularities should be used to

10°
()
10* 1\;
)
..... 3
04 ey | e 4
6,,(6=0) slope=0.4396
S, 107
10" N
100 T T T T T T T
10710 10°® 10 10 10°
r/h
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(b)
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4 ]
10 )
- =2
..... 3
3] e | L 4
10 e FEM
0,¢(0=0) slope=0.4399
S, 107
10!
100 T T T T T T T
10710 108 10 10 10

r/h

Fig. 7. The elastic singularity zone at corner A.
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Fig. 8. The effect of the number of stress singularities (V) on the stresses.

obtain the stresses and displacements. The stress values when the two complex stress singularities are in-
cluded seem to diverge over this range. Even though the reason for this divergence was not studied, it seems
that the complex singularities are very sensitive to the boundary conditions and hence diverge from the
solution for large values of »/h. Hence, it is shown from this study that there is a zone dominated by stress
singularity and by using more than one stress singularity, the domain of convergence was found to be over
eight decades. The results obtained using RWCIM were excellent over this range.

The normal and tangential stresses along the interface at corner A (lap joint, Fig. 2a) were calculated and
plotted in Fig. 9(a) and (b). These values correspond to »/h = 107'°. As can be seen from these figures, the
stresses increase with increasing 0, and increasing value of stiffness ratio, p. The normalized stress intensity
factors as given in Eq. (6) were plotted in Fig. 10(a) and (b). In general, the stress intensity factors increased
for increasing values of p but decreased with increasing 6,. Even though the stresses increased monoton-
ically with p and 0,, the stress intensity factors were not monotonic with respect to either parameter. This
shows that the stress intensity factors, by themselves, are not in correspondence with the stresses in the same
way as they are for cracks.

The same analysis was carried out for corner B. The normal and tangential stresses along the interface at
corner B were calculated and plotted in Fig. 11(a) and (b). These stresses were evaluated at »/h = 1071°. The
stresses were not as regular as in the case of corner A. The non-monotonic nature of the stresses may be
explained by the non-monotonic nature of the stress singularities given in Fig. 5. For the four values of 6,
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Fig. 9. (a) Normal and (b) shear stresses at corner A.

considered here, the stress singularity changes in an irregular fashion. The corresponding stress intensity
factors are plotted in Fig. 12(a) and (b). The stress intensity factors increase with increasing p. However it
can be seen that the stresses and stress intensity factors are not in direct correspondence. Hence, in contrast
to the crack problem, stress intensity factors for different corners cannot be used by themselves to indicate
the severity of the corners.

The same type of analysis was carried out for the joint shown in Fig. 3(a). The stress singularity values at
corner C are plotted in Fig. 13. As expected, the singularity disappears for 6, = 180° as the joint C becomes
a straight edge. The singularity decreases for increasing stiffness ratio, p and does not have a complex
component. There is another bimaterial corner D in this structure and its singularities are plotted in Fig. 14.
Again, as in the case of corner A in Fig. 4, there is a local minimum in the singularity value where the
imaginary component originates. The singularity disappears for 6, > 135°.

Considering only the stress singularities as plotted in Figs. 13 and 14, the lowest singularity for the
structure in Fig. 3(a) occurs at two angles. One of them is when 6, = 180° (8, = 90°). This corresponds to a
butt joint and the corner C disappears. In that case, only the singularity at the corner D has to be accounted
for. Another combination of angles is 0, = 270° and (0, = 135°), approximately. The singularity at corner
D disappears (Fig. 14) and only the singularity at the corner C has to be accounted for (Fig. 13).
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Fig. 10. Stress intensity factors for corner A.

4387

The stress intensity factors were found for two different angles. The intensity factors along with the stress
values were obtained using the RWCIM for the outermost contour, C4 in Fig. 3(c) and are given in Tables 1
and 2. Again, it was noted that as the angle changes (and the dominant singularity), the stress intensity
factors and the stresses were not in correspondence. This means that the stress intensity factors by them-

selves cannot be used to represent the severity of the corner.

3.2. J, deformation plasticity solution

For J, deformation analysis, material 1 was assumed to be rigid and material 2 was taken to be J,
deformation plastic with v, = 0.5 (incompressible). The fourth order differential equation (Eq. (15)) with
the boundary conditions (Eq. (14)) was solved for the eigenvalues A. The multiple shooting method with the
Runge-Kutta scheme was used to integrate the differential equation. For verification purposes, it was
confirmed that for n = 1, the singular values found by this method matched the ones found by the elastic
analysis for v, = 0.5 and p tending to zero. In addition, the singular values for the 0, = 90° matched exactly

with the ones given by Reedy (1993).
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Fig. 11. (a) Normal and (b) shear stresses at corner B.

The stress singularity for the corner A shown in Fig. 2(a) is plotted in Fig. 15. As expected, the sin-
gularity decreases with increasing hardening exponent and increases with increasing 6,. For low values of
the hardening exponent, there is a marked change in the value of the singularity with 0,. For n = 1, the
singularity rises sharply from 4 = 0.087 for 0, = 50° to 2 = 0.405 for 6, = 90°. The increase is much smaller
from 6, = 90° to 6, = 180°, where A = 0.5. In what follows, since the sensitivity was very high for 6, < 90°,
the stress intensity factors were only found for 6, = 60°, 75°, and 90°.

The non-dimensionalized stress intensity factors for the J, deformation plasticity analysis are defined as

- ()

h ao
and
p_ (T ‘a.0(0 =0)
- (g 2= )

where / is the thickness of the specimen and oy is the applied stress.
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Fig. 13. Stress singularity at corner C in Fig. 3(a).
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The stress intensity factors were found from finite element solutions obtained with a very fine mesh near
the corner. The material constants used were £, = 1.55 GPa, gy = 0.137 MPa, o = 0.07, n = 8 and the
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Fig. 14. Stress singularity at corner D in Fig. 3(a).
Table 1
Stresses and stress intensity factors for corner C (6, = 270°)
P 7 00/ 00 K ,0/00 Ky
0.01 0.3971 —7283.1 —0.7791 —4415.5 —0.4723
0.05 0.3106 24405.1 19.13 11941.1 9.358
0.10 0.2319 11.890 0.05704 4.6644 0.02238
0.50 0.03338 0.97685 0.4529 —0.20429 —0.09472
Table 2
Stresses and stress intensity factors for corner (6, = 90°)
14 2 a0/ K, ,0/00 Ky
0.01 0.4391 2656.6 0.1081 —1955.48 —0.07955
0.05 0.3804 —757.27 —0.1189 526.888 0.08275
0.10 0.3195 362.41 0.2316 —235.157 —0.1503
0.50 0.04745 0.14734 0.04942 —0.03358 —0.01126

Fig. 15. The stress singularity at corner A using elastoplastic analysis.
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Fig. 16. Determination of stress intensity factors using FEM solution.

applied load was gy = g,/4. A small value of yield stress was chosen to ensure that large plastic defor-
mations occurred near the corner. As can be seen from Eq. (17), when a logarithmic plot is made of a9/ 0y
vs. r/h or a,9/0¢ vs. r/h, the intercepts are log(K}) and log(K}}) respectively.

A plot of these curves is shown in Fig. 16 where the corner with 6, = 90° was considered with » = 3 and
7. The regions over which the slope () is within 1% of the 4 values found using the differential equation are
also shown. This provides additional verification of the singularity values obtained from the differential
equation. This also shows that there is indeed a zone around the corner that is dominated by the plastic
stress singularity.

The plot was made for stress values up to »/h = 0.5. The stress values for r/h > 0.5 were not plotted as
they were negative and hence cannot be plotted in a logarithmic plot. This shows that the boundary effects
are dominant for /A > 0.5. In fact, the boundary effects can even be seen for »/h > 0.1 in Fig. 16. The zone
over which the plastic singularity dominates lies in between 107¢ < r/h < 10~*. There does not seem to be a
region where linear elastic singularity dominates as the curves do not have a slope corresponding to the
elastic singularity value before the boundary effects dominate. For the elastic analysis results shown in Fig.
7(a) and (b), the dominant zone for the elastic singularities was found to be /h < 107>, Hence, this region is
taken over by the plastic singularity zone for the low yield strength that was considered here.

The plastic stress intensity factors are given in Fig. 17. The K} is nearly constant for the ranges of angles
and hardening exponents considered but K} increases both with respect to the angle and the hardening
exponent. This is consistent with the results of an experimental study with a somewhat different geometry
(Mohammed and Liechti, 2000), where it was found that crack nucleation loads increased with decreasing
corner angle.

For a lap joint as shown in Fig. 2(a), the applied stress is expected to yield a high shear stress along the
interface. This was the case as it was found from the finite element solution that ¢y = 0.56% and v,, = 8.2%
at »/h = 1075, For a fully plastic material, Reedy (1993) has shown that, based on Ilyushin’s theorem, the
stress intensity factor depends only on the hardening exponent. He did not study the effect of varying angle.
As the loading arrangement here is such that the whole region is not plastic, his result may not apply here.
For this lap joint with fixed load, the normal strain is much smaller than the shear strain. It can be seen
from Fig. 17 that KT increases with the corner angle and hardening exponent whereas K]} remains constant.
The fact that there is a strong dependence on the angle when the strain is small (K}) and very little when the
strain is high (K},) indicates the dependence of non-dimensionalized stress intensity factor on a load-like
parameter and the corner singularity, A.
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Fig. 18. Applied load dependence on the stress intensity factors.

To study the effect of the variation of load, the stress intensity factor is plotted for increasing applied
load in Fig. 18. This figure is plotted for n = 8 and 6, = 90°. The non-dimensionalized stress intensity factor
does indeed show dependence on the magnitude of the load though its rate of increase does decay with load.
The same analysis was attempted for the corner C in Fig. 3(a) but the stress values and the stress intensity
factors were found to be very small. For the same load, due to high constraints, there is a large hydrostatic
stress and very small shear stress, giving rise to small values of stress intensity factors along the interface.

4. Conclusions

The aim of this work was to study the severity of bimaterial corners with respect to the angle and in-
vestigate the appropriateness of using stress intensity factors as measure of severity of a bimaterial corner
with arbitrary angle. A variety of bimaterial corners with different material properties and corner angles
were analyzed. In the elastic analysis, both the materials were taken as linear elastic materials and the ratio
of the stiffness was varied. The main conclusions are:
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e The dominant stress singularity, 4;, generally increases with decreasing corner angle except for a slight
decrease where the singularity has a complex component.

e The range of the dominant singularity is 0 < Re (1) < 0.5. Depending on the corner angle and the stiff-
ness ratio, there may be more than one singularity and there are an infinite number of non-singular ei-
genvalues.

¢ In the lap joint problem, the stress singularity when the stiffer material angle is varied (corner B) is more
severe than when the more complaint material angle is varied (corner A).

e More than one singular eigenvalue (if it exists) is needed to increase the range over which the eigenvalue
solutions (stresses and displacements) are valid.

e By comparing the stresses and stress intensity factors for corner A and B, it was found that the stress
intensity factors by themselves cannot characterize the corner.

o The stress singularity for a joint (both sides bonded) did not exhibit a complex component for a wide
range of stiffness ratios and corner angles.

e The lack of correspondence in stresses and stress intensity factors was also found in the case of a scarf
joint. It was concluded that the variation of stress intensity factors with the corner angles and stiffness
ratios cannot be predicted and hence they cannot be used as a nucleation criterion.

J> deformation analysis was carried out by assuming one material to be rigid and the other one to be an
incompressible elastoplastic material. A fourth order differential equation was obtained and solved to
obtain the stress singularities. Finite element solutions with a very fine mesh were used to obtain the stress
intensity factors. The main conclusions drawn from this analysis are:

e The stress singularity decreased with increasing hardening exponent and increasing corner angle.

e The normal plastic stress intensity factor (KT) increased with decreasing corner angle and increasing
hardening exponent. The shear plastic stress intensity factor (Kf;) was relatively insensitive to both the
parameters. This may be due to the high shear strain (8.2%) and small normal strain (0.56%) present near
the corner (r/h = 10° along the interface).

e The non-dimensionalized plastic stress intensity factors flattened out for large values of applied load. In
this case (Fig. 17), close to corner, the stress component that has yielded gives rise to stress intensity fac-
tor that is independent of angle. This may be useful as a crack nucleation criterion when there is substan-
tial yielding.
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